1. Describe the structure and function of the glomerular membrane.

Fenestrated endothelium	Fenestrations allow more bulk flow of water and solutes than normal capillary membranes.	Fixed negative charges \rightarrow repel
Basement membrane	Large spaced meshwork of collagen and proteoglycan fibrils.	proteins.
Epithelium	Inner wall of Bowman's capsule formed from podocytes. Filtrate moves through slit pores between foot processes.	

Glomerular filtration occurs across glomerular membrane – 3 layers.

- Albumin diameter slightly < glomerular pore diameter
 - Minimal change nephropathy \rightarrow loss of fixed –ve charge \rightarrow albuminuria.
- Certain low molecular weight substances bound to plasma proteins → conc. in filtrate < total plasma conc.
- 2. Describe net filtration pressure as a vector sum of hydrostatic and osmotic pressure differences.

Filtration fraction: Proportion of renal plasma flow which is filtered. $filtration \ fraction = \frac{GFR}{renal \ plasma \ flow} = \frac{125ml/min}{625ml/min} = 20\%$

Net filtration pressure = hydrostatic pressure difference + osmotic pressure difference

Bowman's capsular colloid osmotic pressure (π_G) – ~0mmHg.

Bowman's capsular pressure (P_B)

- Not a normal control variable.
- Obstruction of urinary outflow (e.g. by stones) can raise Bowman's capsular pressure $\rightarrow \downarrow$ GFR.

Glomerular capillary colloid osmotic pressure (π_G)

- \uparrow [plasma protein] \rightarrow nonlinear shift in Donnan* distribution for diffusible ions \rightarrow disproportionately $\uparrow \pi_G$.
- \uparrow renal plasma flow + no initial increase in GFR $\rightarrow \downarrow$ filtration fraction, \downarrow end-glomerular $\pi_G \rightarrow \uparrow$ net filtration pressure $\rightarrow \uparrow$ GFR
 - Raise renal plasma flow induce increase in GFR, independent of any effect on hydrostatic pressure.

* The Donnan effect is extra osmotic pressure attributable to cations attached to dissolved plasma proteins.

Glomerular capillary hydrostatic pressure (P_G)

- Determined by 3 physiologically controlled variables.
- Arterial pressure
 - Mean arterial pressure $\rightarrow \uparrow P_G \rightarrow \uparrow GFR$.
 - Effect subject to autoregulation of renal blood flow and GFR \rightarrow effect is slight.

Glomerular Filtration

- Afferent arteriolar resistance
 - $\quad Constrict \rightarrow \uparrow resistance \rightarrow \uparrow pressure \ drop \ across \ arteriole \rightarrow \downarrow P_G \rightarrow \downarrow GFR.$
- Efferent arteriolar resistance
 - Moderate constriction $\rightarrow \uparrow P_G \rightarrow \uparrow filtration fraction \rightarrow \uparrow GFR$.
 - Severe constriction $\rightarrow \downarrow$ renal blood flow $\rightarrow \uparrow$ filtration fraction $\rightarrow \uparrow \pi_G$ nonlinearly (Donnan effect) \rightarrow GFR declines after reaching a peak.

Determinant	Possible causes
$\downarrow K_{\rm f}$	renal disease, diabetes mellitus, hypertension
$\uparrow P_B$	urinary tract obstruction
$\uparrow \pi_{\rm G}$	↓renal blood flow, ↑plasma proteins
$\downarrow P_{G}$	
• ↓MAP	↓arterial pressure
• ↑afferent arteriolar resistance	↑sympathetic activity, vasoconstrictors
• ↓efferent arteriolar resistance	↓angiotensin II

3. Compare glomerular filtration with formation of interstitial fluid at general systemic capillaries.

		Glomerular capillary	Mean systemic
		value	capillary value
Net filtration pressure	Hydrostatic pressure	~10mmHg	~0.3mmHg
	difference + colloid		
	osmotic pressure		
	difference		
Filtration coefficient,	filtration rate	*60ml/(g.day.mmHg)	1.42ml/(g.day.mmHg)
K _f	net filtration pressure		

*g: K_f adjusted for per unit mass of kidneys and systemic capillaries.

Disease states \rightarrow basement membrane thickened \rightarrow filtration coefficient \downarrow

• Examples: chronic hypertension, diabetes mellitus.

4. Describe the neural, hormonal and autocoid control of glomerular filtration and renal blood flow.

Renal blood vessels have rich sympathetic innervation

- Strong sympathetic stimulation \rightarrow renal vasoconstriction $\rightarrow \downarrow RBF \rightarrow \downarrow GFR$.
- Mild sympathetic stimulation \rightarrow little effect.
- Main role respond to brain ischaemia, severe haemorrhage and 'fight or flight'.

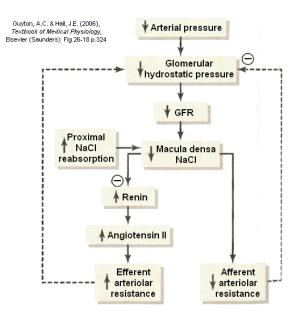
Glomerular Filtration

Vasoconstrictors	Sites of synthesis/secretion	Action
Adrenaline	adrenal medulla	$\downarrow \text{RBF} \rightarrow \downarrow \text{GFR}$
Noradrenaline		
Endothelin	endothelium in damaged	
	vasculature	
Angiotensin II	kidneys, systemic circulation	Preferentially constricts efferent arterioles \rightarrow
		$\uparrow P_G, \downarrow RBF \rightarrow maintains or \uparrow GFR$ and excretion
		of wastes.
		Promotes increased reabsorption of Na ⁺ and
		water in distal tubules.

Hormone and autocoid control of RBF and GFR

Vasodilators	Sites of synthesis/secretion	Action
Nitric oxide	vascular endothelium	Basal NO level maintains normal renal
	throughout body	vasodilation.
		Impaired NO production $\rightarrow \uparrow$ renal vascular
		resistance $\rightarrow \downarrow$ GFR, \downarrow Na ⁺ excretion \rightarrow
		hypertension.
Prostaglandins		Powerful vasodilators – may oppose
Bradykinin		vasoconstrictor effects of sympathetic neural and
-		hormonal input under stressful conditions.

5. Explain autoregulatory and tubuloglomerular feedback mechanisms in the kidney.


Relatively constancy of RBF and GFR over wide range of arterial pressure (75mmHg - 160mmHg).

Urine output is small difference between large amounts of filtration and reabsorption – increased blood pressure \rightarrow small increase in RBF and GFR \rightarrow pressure diuresis/pressure natriuresis.

Autoregulation mostly via tubuloglomerular feedback

- Feedback loop links changes in [NaCl] at macula densa with control of renal arteriolar resistance → Prevents spurious fluctuations in renal excretion.
 - GFR autoregulated at the expense of changes in RBF.
- Macula densa: specialised distal tubular epithelial cells containing secretory organelles directed toward afferent and efferent arterioles.
- Output delivery of NaCl to distal tubule.
- Juxtaglomerula complex
 - Macula densa cells in initial portion of distal tubules
 - Juxtaglomerular cells in walls of afferent and efferent arterioles.
- ↓NaCl
 - − ↓afferent arteriolar resistance $\rightarrow \uparrow P_G \rightarrow \uparrow GFR \rightarrow \uparrow flow$ through loop on Henle \rightarrow proportionally less active reabsorption of NaCl.
 - − ↑renin secretion by juxtaglomerular cells → renin-angiotensin cascade → ↑angiotensin II → preferentially constricts efferent arterioles → $\uparrow P_G \rightarrow \uparrow GFR$.

Glomerular Filtration

Myogenic autoregulatory mechanism

- \uparrow arterial pressure \rightarrow blood vessels stretched $\rightarrow \uparrow$ influx of extracellular Ca²⁺ into smooth muscles \rightarrow blood vessels contract to resist stretch.
- Lack sensory feedback concerning RBF and GFR.